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Objective

This paper will review how energy is stored in a flywheel using the simple concept of a massive 
ball attached to a limited strength string. This concept will also be used to better understand 
the relationship between flywheel mass and strength properties. The paper will discuss how 
material strength influences the performance attributes of flywheels, examining two types of 
materials – steel and graphite fiber reinforced epoxy (GFRE). 
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A manufacturer of high-speed flywheel energy-storage systems for uninterruptible power supply 
(UPS) applications states the following:

“Kinetic energy is roughly equal to mass times velocity squared. So doubling mass doubles 
energy storage, but doubling the rotational speed quadruples energy storage.”

The implication of this statement is that high speed flywheels are superior to low speed designs. 
The truth is that this statement misses several important facts about the physical limitations 
faced by flywheel designers and is thus not sufficient for even the most basic comparison of 
flywheel designs.

The above statement is based on the equations for energy storage of a body of mass (m) which 
is moving in a straight line with a velocity (v).

(1)

However, instead of operating as a mass moving in a straight line, commercial flywheels spin 
around a central axis. Instead of using linear velocity as mentioned above, one should analyze 
flywheel performance as a rotating body. The term angular velocity (ω) is used to define the 
rotational speed of the flywheel and is represented by the Greek letter omega. A discussion of 
this term is given in Appendix A.

One-Dimensional Flywheel Design

Figure 1: One-dimensional flywheel geometry.
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In order to simplify the discussion of flywheel design, consider the simplest one-dimensional 
flywheel – that of a ball having a lumped mass (m) attached to a central point by a string having 
a length (r), and strength (S) as shown in Figure 1. If one spins this “flywheel” about the central 
point, the mass will have an angular velocity (ω). The linear velocity (v) of the mass will be in a 
direction perpendicular to the string and will be equal to the string length (radius of the circular 
path) times the angular velocity giving v = rω. If the equation for velocity is substituted into the 
energy expression above, one sees that the new expression for the stored energy of a one-
dimensional (lumped mass) flywheel is:

(2)

At this point, it still appears that the kinetic energy statement above is valid even though the 
terms from linear motion have been changed to those more applicable for rotary motion. But 
now, consider what is happening to the string that maintains the rotary motion.

Most individuals are familiar with the concept of centrifugal force - spin a weight on the end of 
a string and it takes more force to hold onto the string the faster it is spun. Spin it fast enough 
and the applied force on the string exceeds the strength of the string and the string breaks.  The 
simplified mass of the one-dimensional flywheel represents the energy storing potential while 
the string represents the strength of the flywheel material. The expression for the centrifugal 
force exerted by a mass spinning around a central point is:

(3)

Note that Equation 3, the force on the string, is a direct function of the radius of the mass 
whereas in Equation 2, the stored energy is a function of the radius squared. One is faced with 
another observation from the one-dimensional flywheel:

“Doubling the mass doubles the force, but doubling the speed quadruples the force.”

Thus, the original kinetic energy statement is true only if the strength of the material being 
used is capable of bearing the increase in applied forces. Obviously, if this were the case, 
the designer of the original flywheel has left performance capability on the table with a poorly 
optimized design.  Flywheel designers always strive for designs that operate at the highest 
possible energy within the safe performance constraints of the available materials. But how do 
actual material properties affect the results? 

Assuming one is comparing one-dimensional flywheels of similar geometry (a reasonable 
assumption since the influence of material properties is being compared, not shapes), the 
radius of the two designs would remain fixed and equally important, the cross sectional area of 
the string would remain fixed. If the cross sectional area (A) of the string is calculated, one can 
determine the stress applied to the string. The Greek letter sigma is used to represent stress 
as follows:

(4)
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At this point, enough information exists to compare one-dimensional flywheels made from the 
two most common materials for high performance flywheels – steel and GFRE (graphite fiber 
reinforced epoxy).

A variety of steels have been used flywheels for energy storage applications.  While some slight 
variation in density (weight per unit volume) for different steel alloys does exist, the value tends to 
be close to 0.28 to 0.29 pounds per cubic inch. For GFRE materials, the density is a composite 
of the graphite density and the epoxy density. For flywheels, the ratio of graphite fiber to epoxy 
is on the order of 60 to 70 percent giving a composite density of 0.05 to 0.06 pounds per cubic 
inch. If one did not to take advantage of the higher strength properties of a GFRE flywheel, there 
would be no advantage to using this material. In fact the energy storage would be lower by nearly 
a factor of six according to Equation 2 for a given geometry and speed.

In order to complete the example, material strength must be compared. Again, the strength of 
both steel and GFRE can vary, and considerably more so than the density. Plain carbon steels 
with no heat treatment can have strength values in the low tens of thousands of pounds per 
square inch (psi) compared to highly alloyed and/or heat treated materials with strength values 
of 500,000 psi or more. At these ultrahigh strength levels, the materials cannot be economically 
processed nor do they have properties amenable to safe incorporation into flywheels. Therefore, 
this discussion will assume that the limiting strength of this one-dimensional steel flywheel is 
180,000 psi.  

GFRE material strength varies considerably depending on the properties of the carbon fiber 
and on the volume fractions of fiber and epoxy compared to the total volume. Ultra-high 
strength fibers are available with strength values approaching one million psi. Fibers in this 
range cost approximately $135 per pound whereas fibers with strength closer to 800,000 psi 
are more economical at $50 per pound. When raw graphite fibers are mixed with epoxy to form 
a layered structure, the strength of the “laminate” is reduced roughly in proportion to the volume 
of fiber to the total volume of fiber and epoxy in the direction of loading. As indicated above, the 
volume fraction is typically between 60 and 70 percent giving a net strength of approximately 
500,000-psi for the laminate. Tremendous room for tradeoff exists between GFRE laminate 
performance and cost that a designer must evaluate. Furthermore, one must carefully evaluate 
the benefits of increased performance offered by GFRE composites given the raw material cost 
of high quality steels is substantially lower at about $1 per pound.  

To compare the performance of the one-dimensional flywheels based on the use of the two materials 
identified, assume the mass of the flywheel is concentrated in a sphere of one inch diameter, the 
string length is one foot (12-inches), and the string has a diameter of approximately 1/32 of an inch 
(0.032-inch) – about the diameter of a pin. Results of this comparison are given in Table 1.

Table 1: One-dimensional flywheel performance comparison.

Material Material 
Density 
(lb/in3)

Material 
Strength 
(lb/in2)

Material 
Cost 
($/lb)

Weight 
(lb)

Breaking 
Load 
(lb)

Angular 
Velocity to 

Break
(rad/sec)

Rotational 
Speed 

to Break 
(rev/min)

Stored 
Energy

(watt-sec)

Flywheel 
Cost
($)

Steel 0.283 180,000 $1.00 0.148 127 166.3 1,588 86 $0.15

GFRE 0.058 500,000 $50.00 0.030 353 612.2 5,846 240 $1.52

Mass diameter	 1 in
Mass volume	 0.524 in3
Radius	 12 in
String diameter	 0.03 in
String x-section area	 0.000707 in2
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For each material, the breaking strength (S) of the string is first calculated using Equation 4 by 
multiplying the material strength (σ) by the string cross-sectional area. Using Equation 3, angular 
velocity (ω) required for mass (m) spinning at radius (r) to generate the breaking load (F=S) 
is calculated. Angular velocity is converted into rotational speed using the more conventional 
units of revolutions per minute for reference. Next, using Equation 2, the stored energy (E) from 
the spinning mass (m) rotating at radius (r) with angular velocity (ω) is calculated. Finally, the 
cost of both flywheels using the cost per unit mass multiplied by the mass (m) is calculated.

The results show the stored energy of the GFRE flywheel is indeed higher than one manufactured 
from steel. Notice the ratio of the breaking limit angular velocities of the two materials is 612.2 
divided by 166.3 or 3.68. Using the “speed squared principle” of the original kinetic energy 
statement as the basis for comparison suggests that the energy storage ratio should be equal 
to this amount squared or 13.55. However, the actual ratio of stored energy including the 
inherent properties and limitations of the materials in question is only 2.77.

A few additional points can be extracted from the results in Table 1. If one divides the stored 
energy by the weight, one obtains a gravimetric energy density expressed in units of energy 
storage per unit mass such as watt-seconds per pound or per kilogram. Usually, the term 
gravimetric is dropped and the result is simply referred to as the energy density*. The energy 
density of the steel flywheel in this example is 1,169 watt-seconds per pound and that of the 
GFRE flywheel is 15,967 watt-seconds per pound. This example illustrates one of the more 
attractive properties of using GFRE for flywheels compared to steel and that is the improved 
energy density.  

One should now consider the cost of these flywheels on a per unit energy basis. For the steel 
flywheel, dividing the cost of $0.15 by 173 watt-seconds stored energy gives a specific cost 
of $0.867 per kW-second. Similarly, for the GFRE flywheel, dividing the cost of $1.52 by 479 
watt-seconds stored energy gives a specific cost of $3.17 per kW-second; a factor of 3.66 times 
higher. When considering the use of flywheels for aerospace or ground vehicle applications, 
efforts to maximize the energy density (maximum energy per unit weight) can often justify the 
higher costs of these materials. However, for stationary ground-based applications, the value 
of energy density generally receives lower priority and the final decision on which material to 
use is better left to detailed economic comparison of the final system and other performance 
attributes. 

A final point to consider in this comparison is that the rotational velocity (rpm) of the GFRE 
design is 3.68 times higher than the steel design. Often times one will hear that composite 
flywheels using magnetic bearings are more reliable than lower speed flywheels employing 
mechanical (rolling element) bearings. The fact is that because of the higher speeds required 
for maximizing the capability of composite materials, magnetic bearings are as much an 
enabling technology for using the GFRE materials as they are a factor in the system reliability. A 
comparison between the reliability attributes of rolling element bearings and magnetic bearings 
is the subject of  Active Power white paper #111 (‘Quantitative Reliability Assessment of Ball 
Bearings versus Active Magnetic Bearings for Flywheel Energy Storage Systems).

* Energy density is also often expressed in terms of energy per unit volume in which case this would be the 
volumetric energy density.  Where the preceding adjective is not provided, the intended context may be 
determined from the denominator of the units (i.e. Energy/mass or energy/volume, etc).
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Two-Dimensional Flywheel Design

Once the relationship between the energy storage and strength limitations of flywheel materials 
in one dimension has been visualized, it is a simple matter to extend this vision to two dimensional 
flywheels as shown in Figure 2. Instead of strings attaching the masses, stresses are applied 
to faces of adjacent material elements as shown in Figure 3. In fact, the representation here 
of small elements with surface stresses is exactly how engineers analyze components like 
flywheels using finite element analysis as shown in Figure 4. In the same analogy as the string 
breaking if too much force is applied, the same breakage occurs in a monolithic part if the 
applied stress exceeds the material strength, both expressed in units of force per unit area (i.e., 
pounds per square inch or Newton’s per square meter, etc.).
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Figure 2: Two-dimensional flywheel extension from the one-dimensional representation.

Figure 3: Two-dimensional stresses in a rotating disk. (Burr1 ,1982).
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Elements radiating from the center outward are aligned in the radial direction and those aligned 
perpendicular to the radial elements are aligned in the tangential or hoop direction. In this case, 
the elements share centrifugal loads with neighboring elements in both the radial and tangential 
direction and the distribution of these loads depends to a great extent on the elasticity of the 
material. With steel flywheels both the elasticity and strength properties are relatively uniform 
in all directions.  Composite materials can be designed with unique directional properties and 
designers take advantage of this when developing composite flywheels by aligning the fibers 
in the direction of highest loading. While some composite flywheel concepts have used fibers 
aligned in the radial direction, the predominant method is to align them in the hoop or tangential 
direction due to ease of manufacturing.  

If one integrates the contribution of individual mass elements distributed around the axis of 
rotation of the flywheel, one obtains a property that has units of mass times radius squared 
as did the simple mass on a string which is given the name polar moment of inertia and is 
represented by the term J. For a straight, solid cylindrical flywheel having outer radius, r

o
, the 

polar moment of inertia is:

(5)

The mass of the straight, circular cylinder having density, ρ, can be computed as follows:

(6)

Thus, the polar moment of inertia is:

(7)
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Figure 4: Finite element representation of a two-dimensional flywheel.

r

m s ω

ω

ω

ω

π ρ

ω σ=F/A

σ 3+ν
8

J= o

stored max
J=o π ρ ωJ

extracted max
ω

min
ωJ max

ω

η

- kJ

load max
ωJ - k η

mm 4
1

load

t

max
ω - k

ρ σ t

ρ

o
4

π ρ o o

max
ω - ko

2

ωo

r

m s ω

ω

ω

ω

π ρ

ω σ=F/A

σ 3+ν
8

J= o

stored max
J=o π ρ ωJ

extracted max
ω

min
ωJ max

ω

η

- kJ

load max
ωJ - k η

mm 4
1

load

t

max
ω - k

ρ σ t

ρ

o
4

π ρ o o

max
ω - ko

2

ωo

r

m s ω

ω

ω

ω

π ρ

ω σ=F/A

σ 3+ν
8

J= o

stored max
J=o π ρ ωJ

extracted max
ω

min
ωJ max

ω

η

- kJ

load max
ωJ - k η

mm 4
1

load

t

max
ω - k

ρ σ t

ρ

o
4

π ρ o o

max
ω - ko

2

ωo



9

The energy storage for the same geometry flywheel is: 

(8)

The design of the flywheel motor-generator and/or control electronics for delivering power to 
and from the flywheel usually limits the minimum speed of the flywheel so the useful energy is 
less than the stored energy. The speed ratio ‘k’ is defined as the ratio of the maximum speed 
to the minimum speed. In addition, the discharge efficiency, η, of the flywheel motor-generator 
and power converter further limits the energy delivered to the load. 

The energy extracted from the flywheel by the motor-generator is given by:  

(9)

The energy delivered to the load is given by:

(10)

Substituting equation 7 into equation 10 yields: 

(11)

The first term in brackets is referred to as the “tip-speed”, peripheral speed or surface speed 
of the rotor and it has the units of velocity (inches/second or meters/second) as expected. The 
delivered energy capacity of the flywheel is proportional to the tip speed squared. The reason 
for presenting the flywheel energy relationship in this manner will become apparent when one 
evaluates the stresses in the same geometry.

The maximum tangential stress in a solid circular disk having material density, ρ, a material 
constant† υ, and spinning with angular velocity, ω, is given by:

(12)

Equation 12 shows the stress developed in the spinning flywheel is proportional to the material 
density and the tip-speed. Thus, one cannot arbitrarily increase the speed without compromising 
the safety of the flywheel. One final equation is worth considering. If Equation 11 is divided by 
Equation 6, the expression for the gravimetric energy density of the two-dimensional flywheel 
is realized:
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(13)

Equation 13 can be rewritten in terms of tip-speed squared and substituted into Equation 13. 
The result will show the energy density (energy per unit mass) of the flywheel is proportional to 
the specific strength (strength per unit density) of the material being used. 

(14)

This relationship is presented as a fundamental attribute of flywheel energy-storage systems 
in Genta2 (1985) and shows that, as with the one-dimensional flywheel, the primary advantage 
derived from using materials like GFRE composites with high specific strength is the improved 
gravimetric energy density. Furthermore, for materials such as steel it should be evident that it 
is not the rotational speed or angular velocity that determines the available energy; rather, it is 
the limiting tip-speed that is dependent on the allowable stress that defines the overall design 
and rotor weight.

As an example, the above relationships were built into an Excel spreadsheet and analyzed based 
on the power and runtime of one high-speed steel flywheel manufacturer who claims that high-
speed operation results in a lower weight design. The results of this analysis are shown in Table 
2 and indicate that regardless of rotor speed, the flywheel weight is the same. The accompanying 
chart shows that as the rotational speed of the rotor increases, the outer radius of the rotor must 
decrease to maintain constant tip speed. The only way then to obtain the desired energy is to 
increase the rotor length. However, the resulting flywheel mass is the same for all configurations.  
Interestingly, this manufacturer uses a flywheel with high length to diameter ratio and operates at 
high rotational speed. This high speed operation requires the use of magnetic bearings which in 
a separate white paper can be shown to have lower long term reliability than grease lubricated 
ball bearings when the ball bearings are properly designed.

Low speed steel flywheels supported on ball bearings have been performing admirably in 
aerospace gyroscopes for decades. The International Space Station (ISS) Control Moment 
Gyro (CMG) system uses 220 pound thin disk stainless steel flywheels rotating at 6,000-rpm on 
lubricated ball bearings. A picture of this system is shown in Figure 5. The U.S. Navy only recently 
(2005) posted a broad agency announcement (BAA) for research and development on advanced 
CMG systems with the primary goal of reducing system weight3. At an estimated launch cost of 
$10,000 per pound, composite materials make sense for this application since weight is such a 
critical element. However, for more earthly applications, whether to use composite materials and 
their associated weight reduction or steels and their long-term history of success boils down to 
more fundamental questions such as the final product cost, performance and reliability. 
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† The material constant, υ, is called Poisson’s ratio and represents a coupling factor between deformations in one axis 
that influence deformations in another axis. For metals, the Poisson ratio is typically 0.29 and is relatively uniform 
in all directions. Think of a sheet of rubber that is pulled uniformly on two opposing edges. The rubber will elongate 
in the direction that the sheet is pulled and contract perpendicular to that direction. The ratio of the contraction to 
pull will be 29 percent if the rubber has the same Poisson ratio as steel. Composite materials can have dramatically 
different properties in each of the three principle material dimensions. 
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Table 2: Sizing of a straight cylindrical flywheel based on typical steel properties.  

Note that the flywheel weight is independent of speed.  

radius speed length l/d mass

(in) (m) rad/s rpm (in) (m) (lb) (kg)

3 0.075 4,703 44,908 25.3 0.64 4.22 202 92

4 0.102 3,527 33,681 14.2 0.34 1.78 202 92

5 0.127 2,822 26,945 9.1 0.23 0.91 202 92

6 0.152 2,351 22,454 6.3 0.16 0.53 202 92

7 0.178 2,015 19,246 4.6 0.12 0.33 202 92

8 0.203 1,764 16,841 3.6 0.09 0.22 202 92

9 0.229 1,568 14,969 2.8 0.07 0.16 202 92

10 0.254 1,411 13,473 2.3 0.06 0.11 202 92

13 0.330 1,085 10,363 1.3 0.03 0.05 202 92

14 0.356 1,008 9,623 1.2 0.03 0.04 202 92

15 0.381 941 8,982 1.0 0.03 0.03 202 92

16 0.406 882 8,420 0.9 0.02 0.03 202 92

17 0.432 830 7,925 0.8 0.02 0.02 202 92

18 0.457 784 7,485 0.7 0.02 0.02 202 92

19 0.483 743 7,091 0.6 0.02 0.02 202 92

20 0.508 705 6,736 0.6 0.01 0.01 202 92

Power	 140 kW
Speed ratio	 2.00:1
Discharge efficiency	 95%
Discharge time	 15 sec

Delivered energy	 2,100 kWs
Stored energy	 2,947 kWs

UTS	 180 ksi
	 1,241.1 MPa

UTS safety factor	 3:1

Design stress	 60.0 ksi
	 413.7 MPa

Poisson ratio	 0.29
Poisson factor	 0.41

Density	 0.283 lb/in3

	 7,833.5 kg/m3

Tip speed	 1,175.40 ft/s
	 358.35 m/s
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Summary

An understanding of the relationship between flywheel mass properties and strength properties 
can be obtained by looking at the simple concept of a massive ball attached to a string having a 
limited tensile strength. From this analogy, the predominant advantage of composite materials 
is the increased energy density (i.e., energy per unit weight.). The analysis is then extended to 
two-dimensional flywheel geometries that show a similar relationship between flywheel weight, 
the specific strength of the flywheel material, and the relationship to rotor surface speed, also 
known as tip speed.

Where weight is a design parameter that must receive high priority, composite materials offer 
potential for performance enhancement. This benefit comes at the expense of higher material 
costs. It is erroneous to assume that high speeds are a prerequisite for high performance 
flywheels when certain attributes such as cost, robustness of design and reliability may be of 
higher value.

When designing flywheels for UPS applications, the choice between composite materials and 
their associated weight reduction or steels and their long term history of success typically boils 
down to fundamental issues such as the final product cost, performance and reliability. In his 
book Kinetic Energy Storage, G. Genta summarizes: “A reliable, safe, well-designed and well-
built medium energy-density rotor is enough for most applications.”

Figure 5: 220 pound, 6,000 rpm stainless steel Control Moment Gyroscope (CMG) flywheel 
used on the International Space Station (ISS)4.
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Appendix A – What is Angular Velocity?

Thinking back to high school geometry, one may recall that the ratio of the circumference to the 
diameter of a circle was known by ancient Egyptian and Greek geometers to be the same for all 
circles and that the value was slightly more than 3. The actual value has since been calculated 
more accurately and is 3.14159 to five significant digits. The Greek letter π (pronounce pi) is 
used to represent this value.  

If one walks around a path that prescribes a complete circle, the distance one has traveled, 
regardless of the size of the circle, is π or 3.14159 units (these units being dimensionless). It 
is only when π is multiplied by the diameter (or 2π by the radius) of the circle that the actual 
(dimensional) distance traveled can be determined.  

Engineers like to use names for units of measure like inches and feet.  Just as a foot can be 
divided into smaller units of measure, circular units of measure can be divided into smaller 
increments. Whereas one twelfth of a foot is called an inch, 1/2π (1/6.28319) of a circular unit 
of measure is called a radian. Thus, there are 2π radians in a circle, π radians in a half-circle, 
and π/2 radians is a quarter circle; again independent of the size of the circle.

Velocity is equal to distance divided by time. Linear velocity is equal to, the linear distance 
traveled divided by the time that it takes to travel this distance.  Angular velocity is equal to the 
angular distance traveled (measured in units of radians as discussed above), divided by time.  
Angular velocity will be expressed in units of radians per second as opposed to linear velocity 
which is expressed in units of inches per second.  

If one now considers a flywheel rotating at 7,700 revolutions per minute, what is the angular 
velocity? Remembering there are 2π radians in the circumference of a circle and one revolution 
defines a complete circular path,  it can be concluded that there 2π radians per revolution times 
7,700 revolutions equaling 48,381 radians traveled by this flywheel in one minute of operation.  
Given 60 seconds in a minute, the angular velocity for this flywheel can also be expressed as 
806.3 radians per second. Note again that at this time the size of the flywheel has not been 
mentioned.

Why is this important for flywheels? The primary reason is that the flywheel mass is distributed 
over its volume so not all of the mass is moving at the same speed. If one considers the 
flywheel as being divided into small, interconnected and equal sized lumps of matter, the lumps 
at the outer radius are moving faster and thus store more energy than the equal sized lumps 
at the inner radius. In order to determine the stored energy of the flywheel, the contribution of 
the individual elements needs to be calculated and then summed them together. Fortunately, 
engineers have some mathematical tools that allow this to be done analytically.
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